Math Terms to Know \{for Primary Families\}

Below are a group of terms and phrases you'll hear throughout the year. These five mathematical concepts (ten frame, subitizing, 120 s chart, number sense, place value) are integrated throughout each unit we teach and are year-long skills we will hone.

Subitizing

the ability to quickly identify the number of items in a small set without counting

Number Sense
an understanding of number relationships that allows students to work mathematical problems without a traditional algorithm
 A solid understanding of numbers allows students to conceptualize numbers - What is 10 less/more? Which number is greater/less than? What happens if I double a number? What does a ten look like?

120s Chart

a number line formatted so students can easily identify number patterns
 Understanding the 120s Chart allows students to see patterns within number sequences, as well as, easily work with 10 more/less, 1 more/less. Creates automaticity with numbers.

Place Value

numerical value of a digit based on its position
年 $\left\{\begin{array}{c}\text { Place value allows students to } \\ \text { understand that } 15 \text { is not a " } 1 \text { " and } \\ \text { a " } 5 \text { "; rather, it is a group } \\ \text { of } 10 \text { and } 5 \text { ones. }\end{array}\right\}$

\{Subitizing is the ability to quickly and accurately identify the number of objects in a small set. Quick identification of a number-group means that students aren't counting objects one-by-one. Additionally, subitizing is an important foundation for breaking apart numbers and understanding all numbers can be broken apart in different ways.

What does Subitizing look like?

Teacher: What do you see when you look at this dot pattern?

Student 1: I see 4 black dots and 3 white dots.

There are 7 dots.

Student 2: I see 3 dots on bottom and 4 dots on top. There are 7 dots.

$3+4=7$

Student 3: I see 2 rows of 4 dots but the second row has 1 less.

$$
\begin{aligned}
& 4+4=8 \\
& 8-1=7
\end{aligned}
$$

Note - When we first look at dot patterns we only talk about what we see. We do not write any number sentences about the picture. After we are comfortable seeing dot patterns, we will begin sharing our ideas and connecting them to addition and subtraction sentences.

Why is this strategy important?

Subitizing sets the foundation for decomposing (or breaking apart) numbers. It shows students that sums are made of many different number combinations. When students listen to others ideas about 'seeing' a number, it teaches them that there are many ways to find an answer in math and that's okay. Students learn to 'talk math' when they share their ideas about dot patterns.

How can I support this strategy at home?

Play a game of dominoes or a board game with dice (Yahtzee is a fabulous choice). Take turns quickly shouting out the numbers on the dice or dominoes. Then, match dominoes or dice that have the same sums.

120 Chart \& Place Value

$\{$Place Value helps set the foundation for addition and subtraction as students are able to identify number relationships on the 120s chart. Then, we start building two-digit numbers using tens and ones.

This progresses into ordering and comparing numbers.

I can read \& write numbers to 120.

120S Ghart

a number line formatted so students can easily identify number patterns

Understanding the 120s Chart allows students to see patterns within number sequences, as well as, easily work with 10 more/less, 1 more/less. This creates automaticity with numbers.

67	68	69	70
77	78	79	80
87	88	89	90
97	98	99	100

For example, students will learn 100 has 1 more one than 99 , so it is just to right of 99 on the chart. 100 has l more ten than 90, so it is just below 90 on the chart.

I can order numbers using place value.

Place these numbers in order from least to greatest.

$\underline{6} 4 \quad \underline{8} \quad \underline{5} 7 \quad \underline{3} 6$

36 57 64 81

Place these numbers in order from greatest to least.

$$
\underline{7} 2 \underline{3} 1 \quad \underline{2} 8 \quad \underline{4} 9
$$

49
31
28

I can show numbers as tens \& ones.

Place Value

numerical value of a digit based on its position

I can compare numbers (\langle, , ,).
Which number is greater?

\{
Learning a variety of addition and subtraction strategies. We will model addition strategies that will transition into mental-math strategies. Students are exposed to all strategies but are encouraged to choose the strategy that works best for them and the math problem. Students will use these strategies to solve number stories.

Ten Frame

a structured way to work with numbers within 10

$\ldots+6=10$ $10=6+$ \qquad

Number Stories

Matt has 6 baseballs in his room. Carson has 4 baseballs in his toy box. How many baseballs do Matt and Carson have altogether?

Students will learn addition strategies in context through number stories (i.e. story/word problems). Providing context allows students to make real-world connections.

Addition of 3 AddendS

Students will add 3 numbers by combining various addition strategies based on the addends given.

$$
3+7+3=?
$$

Student 1

Student 2

First, I added 3 and 7 because I knew they made 10. Then, I counted on 3 more. $10 \rightarrow 11 \rightarrow 12 \rightarrow 13$

I knew my doubles fact $3+3$ was equal to 6 . Then, I had $6+7$ which I know is a near double. So, $6+6=12$ plus one more is 13 .

Making 10 to Add

As students learn to make a 10, it gives them a foundation when adding. Base 10 becomes a
'safety' when students aren't sure where to start. Plus, base 10 becomes especially important when learning about decimals, percentages, and exponents in intermediate grades!

$$
6+5 \quad \text { is the same as } \quad 6+4+1 \text { or } 10+1
$$

Part, Part. Whole

Part, Part, Whole is a strategy in which students see a number is made of two parts. When students are given a part, part, whole diagram, they're looking for a missing number. Part, part, whole encourages students to ask - "How are these numbers related to one another?"

What does Part, Part, Whole look like?

Why is this Strategy important?

Eventually, breaking apart numbers (decomposing) will become a mental strategy. As students become pros at decomposing numbers, this skill will translate to other mathematical processes such as adding, subtracting, and finding missing addends (a precursor to algebra). Traditional "fact families" also stem from the concept of part, part, whole.

10

How can I support this strategy at home?

Play a game of dominoes. Consider the domino as 2 parts. Challenge your child to find the whole. As you continue playing, try finding other dominoes that match that whole.
$(4+1=\underline{5}, 3+2=\underline{5}, 0+5=\underline{5}, 6-1=\underline{5})$

Making 10 to Add

Making 10 to Add is one of the most important skills we will build this year and it is a skill that often frustrates families. Initially when teaching students to add using 10, it is manipulative-based and done with ten-frames. Eventually, it will become a mental process for students. As adults, making 10 is a completely mental and intuitive process (because we've had many years of practice), so breaking the numbers down this way can seem cumbersome. Consider - if you did not have a calculator or a pencil, how would you add 35 and 45 ? Would you add the two 5 s to make 10 and then, add $30+40$ to make 70 ? Ultimately adding $10+70$ to get 80 ? If so, you've unknowingly made a 10 to add!

What does Making 10 to Add look like?

*Foundation 1: As students are just learning to make 10, we use 10 frames to make our learning hands-on and 'real'.

$$
6+5 \quad \text { is the same as } 6+4+1 \text { or } 10+1
$$

*Foundation 2: As students gain confidence in breaking-apart numbers, we'll move to numerical representations.

Why is this strategy important?

As students learn to make a 10 , it gives them a starting place when adding. Base 10 becomes a 'safety' when students aren't sure where to start. Plus, base 10 becomes especially important when learning about decimals, percentages, and exponents!

As students add double-digit numbers, making 10 gives students a go-to strategy for breaking apart numbers.

$$
17+24=?
$$

Him... I know $10+20=30$, leaving me $7+4$. I know $7+3=10$, plus 1 left over. So, $30+10+1=41$.
*Foundation 3: Eventually, making 10 to add becomes a mental process that is natural and intuitive to students.

Subtraction Strategies

Learning a variety of subtraction strategies, we will model strategies that will transition into mental-math strategies. Students are exposed to all strategies but are encouraged to choose the strategy that works best for them and the math problem given. Students will use these strategies to solve number stories.

Draw a Picture

$$
9-3=
$$

\qquad

Before students have a variety of strategies to choose from, they may choose to draw a picture or counters to show their thinking.

Ten Frame
$8-3=$ \qquad

I know that 8 minus 3 is the same as 5 .

Gounting Back

Students can count back when subtracting 1 , 2 , or 3 starting with the largest subtrahend.

Near Doubles

A near-doubles fact is a doubles fact plus or minus one. When students know both doubles and counting on/back fluently, they can solve near doubles mentally.

Fact Families

$6+4=10$
$4+6=10$
$10-4=6$
$10-6=4$

Fact families are made up of four related facts in which the same three numbers are used in two addition and two subtraction equations.

Making 10 to Subtract is one of many subtraction strategies students will learn this year and it is a skill that often frustrates families. Initially when teaching students to subtract using 10, it is manipulative-based and done with ten-frames. Eventually, it will become a mental process for students. As adults, making 10 is a completely mental and intuitive process (because we've had many years of practice), so breaking the numbers down this way can seem cumbersome. Additionally, Making 10 to Subtract is a strategy many students will naturally gravitate towards while other students may prefer another strategy (and that is okay!).

What does Making 10 to Subtract look like?

*Foundation 1: As students are just learning to make 10, we use 10 frames to make our learning hands-on and 'real'.

$$
\text { 13-5 } \quad \text { is the same as } \quad 13-3-2=8
$$

*Foundation 2: As students gain confidence in breaking-apart numbers, we'll move to numerical representations.
*Foundation 3: Eventually, making 10 to subtract becomes a mental process that is natural and intuitive to students.

Why is this strategy important?

As students learn to make a 10 , it gives them a starting place when adding and subtracting. Base 10 becomes a 'safety' when students aren't sure where to start. Plus, base 10 becomes especially important when learning about decimals, percentages, and exponents!

